Role of class A penicillin-binding proteins in the expression of beta-lactam resistance in Enterococcus faecium.
نویسندگان
چکیده
Peptidoglycan is polymerized by monofunctional d,d-transpeptidases belonging to class B penicillin-binding proteins (PBPs) and monofunctional glycosyltransferases and by bifunctional enzymes that combine both activities (class A PBPs). Three genes encoding putative class A PBPs (pbpF, pbpZ, and ponA) were deleted from the chromosome of Enterococcus faecium D344R in all possible combinations in order to identify the glycosyltransferases that cooperate with low-affinity class B Pbp5 for synthesis of peptidoglycan in the presence of beta-lactam antibiotics. The viability of the triple mutant indicated that glycan strands can be polymerized independently from class A PBPs by an unknown glycosyltranferase. The susceptibility of the DeltapbpF DeltaponA mutant and triple mutants to extended spectrum cephalosporins (ceftriaxone and cefepime) identified either PbpF or PonA as essential partners of Pbp5 for peptidoglycan polymerization in the presence of the drugs. Mass spectrometry analysis of peptidoglycan structure showed that loss of PonA and PbpF activity led to a minor decrease in the extent of peptidoglycan cross-linking by the remaining PBPs without any detectable compensatory increase in the participation of the L,D-transpeptidase in peptidoglycan synthesis. Optical density measurements and electron microscopy analyses showed that the DeltapbpF DeltaponA mutant underwent increased stationary-phase autolysis compared to the parental strain. Unexpectedly, deletion of the class A pbp genes revealed dissociation between the expression of resistance to cephalosporins and penicillins, although the production of Pbp5 was required for resistance to both classes of drugs. Thus, susceptibility of Pbp5-mediated peptidoglycan cross-linking to different beta-lactam antibiotics differed as a function of its partner glycosyltransferase.
منابع مشابه
Involvement of the Eukaryote-Like Kinase-Phosphatase System and a Protein That Interacts with Penicillin-Binding Protein 5 in Emergence of Cephalosporin Resistance in Cephalosporin-Sensitive Class A Penicillin-Binding Protein Mutants in Enterococcus faecium
UNLABELLED The intrinsic resistance of Enterococcus faecium to ceftriaxone and cefepime (here referred to as "cephalosporins") is reliant on the presence of class A penicillin-binding proteins (Pbps) PbpF and PonA. Mutants lacking these Pbps exhibit cephalosporin susceptibility that is reversible by exposure to penicillin and by selection on cephalosporin-containing medium. We selected two ceph...
متن کاملDifferential Effects of Penicillin Binding Protein Deletion on the Susceptibility of Enterococcus faecium to Cationic Peptide Antibiotics.
Beta-lactam antibiotics sensitize Enterococcus faecium to killing by endogenous antimicrobial peptides (AMPs) of the innate immune system and daptomycin through mechanisms yet to be elucidated. It has been speculated that beta-lactam inactivation of select E. faecium penicillin binding proteins (PBPs) may play a pivotal role in this sensitization process. To characterize the specific PBP inacti...
متن کاملEffects of two novel amino acid substitutions on the penicillin binding properties of the PBP5 C‑terminal from Enterococcus faecium.
The low‑affinity penicillin‑binding protein (PBP)5 is responsible for resistance to β‑lactam antibiotics in Enterococcus faecium. (E. faecium). In order to evaluate more fully the potential of this species for the development of resistance to β-lactam antibiotics, the present study aimed to examine the extent of penicillin-binding protein (PBP) variations in a collection of clinical E. faecium ...
متن کاملGenome-Wide Identification of Ampicillin Resistance Determinants in Enterococcus faecium
Enterococcus faecium has become a nosocomial pathogen of major importance, causing infections that are difficult to treat owing to its multi-drug resistance. In particular, resistance to the β-lactam antibiotic ampicillin has become ubiquitous among clinical isolates. Mutations in the low-affinity penicillin binding protein PBP5 have previously been shown to be important for ampicillin resistan...
متن کاملMechanisms of resistance to imipenem and ampicillin in Enterococcus faecalis.
We found ampicillin- and imipenem-resistant isolates of vanA-possessing Enterococcus faecalis with MICs of 8 to 16 microg/ml and 4 to 32 microg/ml, respectively. There have been few reports about penicillin- and imipenem-resistant E. faecalis. Two mechanisms of beta-lactam resistance in E. faecalis, the production of beta-lactamase and the overproduction of penicillin-binding proteins (PBPs), h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 191 11 شماره
صفحات -
تاریخ انتشار 2009